Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: A comparative study

نویسندگان

  • Guillermo Parrilla-Reverter
  • Marta Agudo
  • Francisco Nadal-Nicolás
  • Luis Alarcón-Martínez
  • Manuel Jiménez-López
  • Manuel Salinas-Navarro
  • Paloma Sobrado-Calvo
  • José M. Bernal-Garro
  • María P. Villegas-Pérez
  • Manuel Vidal-Sanz
چکیده

We examined qualitatively and quantitatively in adult rat retinas the temporal degeneration of the nerve fibre layer after intra-orbital optic nerve transection (IONT) or crush (IONC). Retinal ganglion cell (RGC) axons were identified by their heavy neurofilament subunit phosphorylated isoform (pNFH) expression. Optic nerve injury induces a progressive axonal degeneration which after IONT proceeds mainly with abnormal pNFH-accumulations in RCG axons and after IONC in RGCs somas and dendrites. Importantly, this aberrant pNFH-expression pattern starts earlier and is more dramatic after IONT than after IONC, highlighting the importance that the type of injury has on the time-course of RGC degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Optic Nerve Transection in Rats: A Model Established with a New Operative Approach to Assess Secondary Degeneration of Retinal Ganglion Cells

Previous studies have shown that the secondary degeneration of retinal ganglion cells (RGCs) occurs commonly in glaucoma. Partial optic nerve transection is considered a useful and reproducible model. Compared with other optic nerve injury models used commonly for assessing secondary degeneration, e.g. complete optic nerve transection and optic nerve crush models, the partial optic nerve transe...

متن کامل

Mechanisms of secondary degeneration after partial optic nerve transection

Secondary degeneration occurs commonly in the central nervous system after traumatic injuries and following acute and chronic diseases, including glaucoma. A constellation of mechanisms have been shown to be associated with secondary degeneration including apoptosis, necrosis, autophagy, oxidative stress, excitotoxicity, derangements in ionic homeostasis and calcium influx. Glial cells, such as...

متن کامل

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in...

متن کامل

Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury.

PURPOSE Traumatic optic neuropathy often induces a loss of vision that proceeds rapidly within several hours, together with retinal ganglion cell death, in a much slower time course. Electrical stimulation has previously been shown to rescue injured retinal ganglion cells from cell death. The present study tests whether transcorneal electrical stimulation could preserve visual function after an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2009